skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bonfils, Xavier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025Mand a radius of 0.4250 ± 0.0091R. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029Mand a radius of 0.5299 ± 0.0091R. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K). 
    more » « less
  2. ABSTRACT A new generation of observatories is enabling detailed study of exoplanetary atmospheres and the diversity of alien climates, allowing us to seek evidence for extraterrestrial biological and geological processes. Now is therefore the time to identify the most unique planets to be characterized with these instruments. In this context, we report on the discovery and validation of TOI-715 b, a $$R_{\rm b}=1.55\pm 0.06\rm R_{\oplus }$$ planet orbiting its nearby (42 pc) M4 host (TOI-715/TIC 271971130) with a period $$P_{\rm b} = 19.288004_{-0.000024}^{+0.000027}$$ d. TOI-715 b was first identified by TESS and validated using ground-based photometry, high-resolution imaging and statistical validation. The planet’s orbital period combined with the stellar effective temperature $$T_{\rm eff}=3075\pm 75~\rm K$$ give this planet an installation $$S_{\rm b} = 0.67_{-0.20}^{+0.15}~\rm S_\oplus$$, placing it within the most conservative definitions of the habitable zone for rocky planets. TOI-715 b’s radius falls exactly between two measured locations of the M-dwarf radius valley; characterizing its mass and composition will help understand the true nature of the radius valley for low-mass stars. We demonstrate TOI-715 b is amenable for characterization using precise radial velocities and transmission spectroscopy. Additionally, we reveal a second candidate planet in the system, TIC 271971130.02, with a potential orbital period of $$P_{02} = 25.60712_{-0.00036}^{+0.00031}$$ d and a radius of $$R_{02} = 1.066\pm 0.092\, \rm R_{\oplus }$$, just inside the outer boundary of the habitable zone, and near a 4:3 orbital period commensurability. Should this second planet be confirmed, it would represent the smallest habitable zone planet discovered by TESS to date. 
    more » « less
  3. Abstract We present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright ( V J = 12.5, K s = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R ⊕ and 0.98 ± 0.06 R ⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M ⊕ and 1.4 M ⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R ⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung–Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ Earth ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  7. Abstract We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0.″2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5σupper limit ofMP< 7.1MandρP< 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20MJ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620 b as a low-density exoplanet transiting the central star in this system. The low density of TOI 620 b makes it one of the most amenable exoplanets for atmospheric characterization, such as with the James Webb Space Telescope and Ariel, validated or confirmed by the TESS mission to date. 
    more » « less